Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Microb Pathog ; 174: 105923, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-2290808

RESUMEN

Antibiotic resistance has become an indispensably alarming menace to the global community. The primary factors are overuse and abuse of antibiotics, lack of novel medicines under development, the health care industry's focus on profit, and the absence of diagnostic testing prior to the prescription of antibiotics. Additionally, over the past few decades, the main factors contributing to the global spread of antibiotic resistance have been the overuse of antibiotics in livestock and other animals, drug efficacy, development of fewer new vaccines, environmental toxicity, transmission through travel, and lack of funding for healthcare research and development. These factors have accelerated resistance in microorganisms through structural and functional modifications in bacteria such as reduced drug permeability, increased efflux pumps, enzymatic antibiotic modification, and change in drug target, intracellular infection, and biofilm creation. There has been an increase in resistance during the pandemic and among cancer patients due to improper prescriptions. A number of modern therapeutic alternatives have been developed to curb widespread antibiotic resistance such as nanoparticle, bacteriophage, and antimicrobial biochemical approaches. It is high time to explore new alternatives to curtail enormous increase in resistant pathogens which could be an incurable global confrontation. This review highlights the complete insight on the global drivers of resistance along with the modes of action and impacts, finally discussing the latest therapeutic alternatives.


Asunto(s)
Bacterias , Pandemias , Animales , Farmacorresistencia Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Viaje
2.
Microb Pathog ; 179: 106088, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-2248536

RESUMEN

Significant efforts and initiatives were already made in the health care systems, however in the last few years; our world is facing emergences of viral infections which potentially leading to considerable challenges in terms of higher morbidity, mortality, increased and considerable financial loads on the affected populations. Over ten major epidemics or pandemics have been recorded in the twenty-first century, the ongoing coronavirus pandemic being one of them. Viruses being distinct obligate pathogens largely dependent on living beings are considered as one of the prominent causes of death globally. Although effective vaccines and antivirals have led to the eradication of imperative viral pathogens, the emergences of new viral infections as well as novel drug-resistant strains have necessitated the implementation of ingenious and efficient therapeutic approaches to treat viral outbreaks in the future. Nature being a constant source of tremendous therapeutical resources has inspired us to develop multi-target antiviral drugs, overcoming the challenges and limitations faced by pharmaceutical industry. Recent breakthroughs in the understanding of the cellular and molecular mechanisms of viral reproduction have laid the groundwork for potential treatment approaches including antiviral gene therapy relying on the application of precisely engineered nucleic acids for disabling pathogen replication. The development of RNA interference and advancements in genome manipulating tools have proven to be especially significant in this regard. In this review, we discussed mode of actions and pathophysiological events associated with the viral infections; followed by distributions, and advancement made towards the detection strategies for timely diagnosis. In the later section, current approaches to cope up the viral pathogens and their key limitations have also been elaborated. Lastly, we also explored some novel and potential targets to treat such infections, where attentions were made on next generation gene editing technologies.


Asunto(s)
COVID-19 , Virosis , Virus , Humanos , Virosis/diagnóstico , Virosis/tratamiento farmacológico , Antivirales/uso terapéutico , Virus/genética , Edición Génica
3.
Mol Biotechnol ; 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: covidwho-2227193

RESUMEN

Genome-editing technology has enabled scientists to make changes in model organisms' DNA at the genomic level to get biotechnologically important products from them. Most commonly employed technologies for this purpose are transcription activator like effector nucleases (TALENs), homing-endonucleases or meganucleases, zinc finger nucleases (ZFNs), and clustered regularly interspaced short palindromic repeats (CRISPR) associated protein 9 (Cas9). Among these tools, CRISPR/Cas9 is most preferred because it's easy to use, has a small mutation rate, has great effectiveness, low cost of development, and decreased rate of advancement. CRISPR/Cas9 has a lot of applications in plants, animals, humans, and microbes. It also has applications in many fields such as horticulture, cancer, food biotechnology, and targeted human genome treatments. CRISPR technology has shown great potential for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic to provide early and easy detection methods, possible treatment, and vaccine development. In the present review, genome-editing tools with their basic assembly and features have been discussed. Exceptional notice has been paid to CRISPR technology on basis of its structure and significant applications in humans, plants, animals, and microbes such as bacteria, viruses, and fungi. The review has also shed a little light on current CRISPR challenges and future perspectives.

4.
Sci Rep ; 12(1): 19087, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2106475

RESUMEN

The World Health Organization categorized SARS-CoV-2 as a variant of concern, having numerous mutations in spike protein, which have been found to evade the effect of antibodies stimulated by the COVID-19 vaccine. The susceptibility to omicron variant by immunization-induced antibodies are direly required for risk evaluation. To avoid the risk of arising viral illness, the construction of a specific vaccine that triggers the production of targeted antibodies to combat infection remains highly imperative. The aim of the present study is to develop a particular vaccine exploiting bioinformatics approaches which can target B- and T-cells epitopes. Through this approach, novel epitopes of the S protein-SARS-CoV-2 were predicted for the development of a multiple epitope vaccine. Multiple epitopes were selected on the basis of toxicity, immunogenicity and antigenicity, and vaccine subunit was constructed having potential immunogenic properties. The epitopes were linked with 3 types of linker EAAAK, AAY and GPGPG for vaccine construction. Subsequently, vaccine structure was docked with the receptor and cloned in a pET-28a (+) vector. The constructed vaccine was ligated in pET-28a (+) vector in E. coli using the SnapGene tool for the expression study and a good immune response was observed. Several computational tools were used to predict and analyze the vaccine constructed by using spike protein sequence of omicrons. The current study identified a Multi-Epitope Vaccine (MEV) as a significant vaccine candidate that could potentially help the global world to combat SARS-CoV-2 infections.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2/genética , Vacunas contra la COVID-19/genética , Glicoproteína de la Espiga del Coronavirus/química , COVID-19/prevención & control , Biología Computacional , Escherichia coli , Epítopos de Linfocito B , Inmunogenicidad Vacunal , Epítopos de Linfocito T
5.
J Virol Methods ; 300: 114375, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: covidwho-1654862

RESUMEN

In late 2019, following the emergence of a ß-originated SARS-CoV-2, phylogenetic and evolutionary approaches have been demonstrated to strengthen the diagnostic and prophylactic stratagem of COVID-19 at an unprecedented level. Despite its clinical prominence, the SARS-CoV-2 gene set remains largely irrefutable by impeding the dissection of COVID-19 biology. However, many pieces of molecular and serological evidence have predicted that SARS-CoV-2 related viruses carry their roots from bats and pangolins of South East Asia. Analysis of viral genome predicts that point mutations at a rate of 10-4 nucleotides per base in the receptor-binding domain allow the emergence of new SARS-CoV-2 genomic variants at regular intervals. Research in the evolution of molecular pathways involved in emergence of pandemic is critical for the development of therapeutics and vaccines as well as the prevention of future zoonosis. By determining the phyletic lineages of the SARS-CoV-2 genomic variants and those of the conserved regions in the accessory and spike proteins of all the SARS-related coronaviruses, a universal vaccine against all human coronaviruses could be formulated which would revolutionize the field of medicine. This review highlighted the current development and future prospects of antiviral drugs, inhibitors, mesenchymal stem cells, passive immunization, targeted immune therapy and CRISPR-Cas-based prophylactic and therapeutic strategies against SARS-CoV-2. However, further investigations on Covid-19 pathogenesis is required for the successful fabrication of successful antivirals.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales , Humanos , Pandemias , Filogenia
6.
International Migration ; : 1, 2021.
Artículo en Inglés | Academic Search Complete | ID: covidwho-1142900

RESUMEN

To ward off the outbreak of the coronavirus disease (COVID‐19) in 2019, the Jordanian government applied quarantine to the Jordanian population in addition to Syrian refugees. We evaluated the quarantine's psychological effect on people in Jordan after three weeks of quarantine. The prevalence of post‐traumatic stress disorder (PTSD) in our sample population was determined using a higher than twenty score on the Impact of Event Scale‐Revised (IES‐R). The 2380 people who received the survey online demonstrated a high prevalence of PTSD, in which PTSD showed incidence of 82.5% and 66.5 in Syrian refugees and Jordanian populations, respectively. This study also reports the trend towards more increased PTSD prevalence in Syrian refugees compared to the Jordanian population depending on age, education and the household's combined monthly income. Knowledge and awareness of quarantined people's interactions are crucial to optimizing control of infectious diseases and reducing adverse impacts on those quarantined. [ABSTRACT FROM AUTHOR] Copyright of International Migration is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA